Cis- AND trans-INFLUENCE OF LIGANDS IN PLATINUM(II) COMPLEXES. THE CRYSTAL AND MOLECULAR STRUCTURE OF cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\right.$ (CO)]

IJUBICA MANOJLOVIĆ-MUIR, KENNETH W. MUIR and TIHOMIR SOLOMUN Department of Chemistry, University of Glasgow,

Glasgow Gl2 80Q (Great Britain)
(Received August 22nd, 1977)

Surmary

In the complexes cis- $\left[\mathrm{PtCl}_{2}\left(\right.\right.$ PEt $\left.\left._{3}\right) \mathrm{L}\right]$, where $L=C l^{-}$, $C\left(\mathrm{NPhCH}_{2}\right)_{2}, \mathrm{C}(\mathrm{OEt}) \mathrm{NHPh}, \mathrm{CNPh}, \mathrm{CO}, \mathrm{PEt}_{3}, \mathrm{P}(\mathrm{OPh})_{3}$ or $\mathrm{PF}_{3}{ }^{\prime}$ ligands L exert cis-influence on the $P t-P$ bond lengths (ca. $0.06 \AA$), which is almost as large as their trans-influence on the Pt-Cl (trans to L) bond lengths (ca. 0.07Aㅇ. The two effects are independent of each other and lead to different cis- and trans-influence series of L. The trend in Pt-Cl (cis to L) distances, displaying a variation of about $0.03 \AA$, reflects the change in the length, and presumably strength, of the Pt-P bonds.

The X-ray analysis of cis-[PtCl $\left.{ }_{2}\left(\mathrm{PEt}_{3}\right)(\mathrm{CO})\right]$ was based on diffractometric intensities of 1820 independent reflections. The drystal structure was solved by the heavy atom method and refined by full-matrix least-squares to $R=0.037$. The crystals are orthorhombic, space group Pca2 1 . $a=12.777$, $\underline{b}=8.587, \underline{c}=11.424 \AA^{\circ}, \underline{z}=4$. They are built of discrete monomeric molecules with cis-square planar geometry. Selected bond lengths are: Pt-C 1.855(14), Pt-p 2.265(3). Pt-Cl(trans to c) $2.296(4)$ and Pt-cl (trans to P) $2.368(3) \mathrm{A}$:

Introduction

In square planar transition metal complexes the effects of ligands on the strength of cis-metal-ligand bonds are of interest, not only intrinsically, but also because they are germane to the much studied phenomenon of trans-influence. The existance of cis-influence in platinum(II) complexes has been inferred from spectroscopic results [1].

We, however, first noted in 1974 that the bond lengths in cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PPh}_{3}\right)(\mathrm{CO})\right]$, compared with those in other cis-[PtCl $\left.{ }_{2}\left(\mathrm{PR}_{3}\right) \mathrm{L}\right]$ complexes $\left(\mathrm{PR}_{3}=\mathrm{PMe}_{3}, \mathrm{PEt}_{3}\right.$ or $\mathrm{PEt}_{2} \mathrm{Ph}$ and $L=\mathrm{PMe}_{3}$, carbenoid or isocyanide), indicate that the carbonyl group weakens the Pt-P and strengthens the Pt-Cl bonds cis to itself; this was in conformity with trends displayed by ${ }^{I}$ If(Pt-P) coupling constants and $v(P t-C l)$ stretching frequencies in analagous complexes [2]. While we considered it likely that these observations reflect a cis-influence of the carbonyl group, we pointed out that since the complexes compared contain different ${P R_{3}}_{3}$ ligands the effects of the phosphine substituents may also be involved [2-4]. Variations in the $P t-P$ bond lengths in the complexes cis- $\left[P t C l_{2}\left(P R_{3}\right) L\right]$ have also been noticed by Russell et al. [5].

To investigate variations in the lengths of platinumligand bonds cis and trans to L, originating from change in the nature of L only, we have chosen to examine a series of triethylphosphine complexes cis-[PtCl $\left.{ }_{2}\left(\mathrm{PEt}_{3}\right) L_{1}\right]$. Crystallographic studies of such complexes with $L=\mathrm{Cl}^{-}$. C (OEt) NHPh, $C\left(\mathrm{NPhCH}_{2}\right)_{2}, \mathrm{CNPh}^{\prime}, \mathrm{PEt}_{3}, \mathrm{PF}_{3}$ or $\mathrm{P}(\mathrm{OPh})_{3}$ have already been carried out in this laboratory and elsewhere [6-12], and we report here the results of an accurate X - ray analysis of the compound with $I=$ CO. The crystal structure of this compound . . was first determined by E.M. Badley, using photographic diffraction data but the results obtained are of low accuracy [9]:

Experimental
 Experimental

Crystals of cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right)\right.$ (CO)] are air-stable transparent needles elongated along as

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{7} \mathrm{H}_{15} \mathrm{Cl}_{2} \text { OPPt. M.W. }=412.2 \text {. Orthorhombic. space group } \\
& \text { Pca2 }_{1}, \underline{a}=12.777, \underline{b}=8.587, \underline{c}=11.424 \AA^{\circ}, \underline{U}=1253.4 \AA^{3} \text {, } \\
& \underline{Z}=4, \underline{D}_{c}=2.184 \mathrm{gcm}^{-3}, \underline{F}(000)=768 . \quad \text { Mo- } \underline{K}_{\alpha} \text { radiation, } \\
& \lambda=0.71069{ }^{\circ}, \mu\left(\mathrm{MO}-\mathrm{K}_{\alpha}\right)=118.3 \mathrm{~cm}^{-1} \text {. }
\end{aligned}
$$

Measurements

A crystal of approximate dimensions $0.50 \times 0.21 \times 0.24 \mathrm{~mm}$ was selected for the analysis and its principal faces, belonging to the forms \{100\}, \{010\} and \{001\}, were indentified by optical goniometry and X-ray measurements.

The crystal symmetry and preliminary unit cell- dimensions were determined from oscillation and Weissenberg photographs. Systematically absent reflections are consistent with space groups Pca2 ${ }_{1}$ (No. 29) and Pcam, the latter being an unconventional setting of the space group Pbcm (No. 57). The non-centrosymmetric space group pca2 was later proved correct by a successful structure analysis. The preliminary unit cell dimensions were adjusted by a least-squares treatment of the setting angles for 22 reflections, centred on a Hilger and Watts" Y290 four-circle diffractometer controlled by a PDP8 computer. The intensities of reflections were measured on the Y290 diffractometer, using molybdenum radiation, a graphite monochromator and a pulse-height analyser. The $\theta-2 \theta$ scan technique was employed. Each reflection was scanned through a θ range of 0.6° with a scan step of 0.02° and a counting time of 2 s per step. The local background was counted. for $15 s$ at each end of the scan range. The intensities of two strong
reflections, periodically remeasured throughout the experiment, varied by less than $\pm 5 \%$ of their mean values.

The integrated intensities, I, and their standard deviations, o(I), were obtained using relationships described earlier ($\underline{q}=0.04$) [13]. They were corrected for Lorentz, polarisation. counting-loss and absorption effects. The transmission factors. on F^{2}. calculated by Gaussian integration, varied between 0.07 and 0.16.

The intensities of all hkl reflections with $\theta\left(\mathrm{Mo}-\mathrm{K}_{\alpha}\right) \leq 35^{\circ}$ were measured. Of these, only 1820 (ca. 66\%), for which I $\geqslant 3 \sigma(\underline{I})$, were used in the subsequent calculations.

Structure analysis
The position of the platinum atom, at $\underline{z}=1 / 4$, was found from a Patterson function. With $\underline{Z}=4$, the space group Pcam would then require all molecules to lie in mirror planes normai to \mathcal{E}. This proved incompatible with the difference synthesis phased by the platinum atom, and the space group Pca² $_{1}$ was therefore adopted in the subsequent analysis. Interpretation of this synthesis was complicated by pseudosymmetry, giving rise to four possible arrangements for atoms co-ordinated to platinum. Each of these arrangenents was refined and the one which gave an acceptable set of platinumligand bond lengths and angles, and also the lowest value of R. was used in further calculations. The positions of the remaining non-hydrogen atoms were determined from subsequent difference syntieses.

The structure sas refined by a least-squares minimisation of the function $\Sigma\left\{\left(I E_{0} I-\mid F_{C} \|\right) / \sigma\left(\underline{F}_{0}\right)\right\}^{2}$. The atomic scattering factors were taken from ref. 14, and the anomalous scattering of platinum, chlorine and phosphorus atoms was accounted for [14]. Hydrogen atoms were not located. Refinement of the
positional and anisotropic vibrational parameters of ail nonhydrogen atoms converged at $\underline{R}=0.037$ and ${\underset{W}{w}}^{R}=0.047$.

The correctness of the indexing of reflections was then verified, by refining the structure with hki reflections re-indexed as $\underline{h \bar{k} I \text {. This refinement converged at } \underline{R}=0.039, ~(1)}$ and ${\underset{-}{W}}^{R_{W}}=0.049$, both significantly greater than the values obtained with the original indexing.

In the last cycle of refinement all parameters shifted by $\leq 0.05 \sigma$. The standard deviation of an observation of unit weight was 1.71. The mean values of $\left(\mid E_{o} \|-\left(E_{c} \mid\right)^{2} / \sigma^{2}\left(E_{o}\right)\right.$ showed no systematic trends when analysed as a function of

TABLE 1

FRACTIONAL ATOMIC COORDINATES

Atom	$\underline{\underline{x}}$	y	\underline{z}
Pt	0.04379 (3)	-0.03769(3)	1/4
C1(1)	$0.1001(3)$	$0.2962(3)$	$0.2146(3)$
cl(2)	0.1884 (3)	-0.0513 (4)	$0.1511(4)$
P	-0.0024 (2)	-0.2141 (3)	0.2789 (3)
0	-0.1411 (8)	0.1743 (13)	$0.3710(14)$
C(1)	-0.0731(11)	$0.1187(14)$	0.3245 (14)
C(2)	0.1003 (9)	-0.3213(15)	0.3563 (12)
c(3)	0.1231 (13)	-0.2580 (19)	0.4789 (15)
C(4)	-0.1270(11)	-0.2363(15)	0.3580 (13)
C(5)	-0.1503 (13)	-0.4099(17)	$0.3829(15)$
C(6)	-0.0189(10)	-0.3149(13)	$0.1414(11)$
C(7)	-0.1042(12)	-0.2477(17)	0.0656 (15)

TABLE 2

THERMAL PARAMETERS OF ATOMS ${ }^{\text {a }}$

Atom	\underline{U}_{11}	\underline{U}_{22}	\underline{U}_{33}	\underline{U}_{12}	\underline{U}_{13}	\underline{U}_{23}
Pt	$45.1(2)$	$33.5(1)$	$45.2(2)$	$1.5(1)$	$-0.4(3)$	$-4.1(3)$
$C 1(1)$	$77(2)$	$38(1)$	$75(2)$	$-8(1)$	$-6(2)$	$3(1)$
$C 1(2)$	$64(2)$	$58(2)$	$92(3)$	$0(2)$	$32(2)$	$-10(2)$
P	$45(1)$	$34(1)$	$45(1)$	$-1(1)$	$-1(1)$	$-5(1)$
0	$67(7)$	$68(6)$	$147(12)$	$25(6)$	$25(8)$	$-18(8)$
$C(1)$	$57(7)$	$37(5)$	$83(9)$	$-6(5)$	$4(7)$	$-2(6)$
$C(2)$	$45(6)$	$48(6)$	$63(7)$	$5(5)$	$-6(5)$	$1(5)$
$C(3)$	$73(9)$	$79(9)$	$69(9)$	$12(8)$	$-13(7)$	$-3(8)$
$C(4)$	$57(7)$	$53(7)$	$58(7)$	$-5(6)$	$8(6)$	$-4(6)$
$C(5)$	$87(10)$	$51(6)$	$80(10)$	$-15(7)$	$6(9)$	$2(7)$
$C(6)$	$61(7)$	$41(5)$	$50(6)$	$-1(5)$	$0(5)$	$-13(5)$
$C(7)$	$62(8)$	$69(9)$	$69(9)$	$6(7)$	$-17(7)$	$-6(8)$

a Each atom was assigned an anisotropic temperature factor of the form $\exp \left(-2 \times 10^{-3} \pi^{2} \sum_{j=1}^{3} \sum_{j=1}^{3} \underline{h}_{i} \underline{h}_{j} \underline{a}_{i} \underline{a}_{j}^{*} \underline{U}_{i j}\right)$.
$\left|F_{0}\right|$ or $\sin \theta^{*}$. The extreme function values in the final difference synthesis (1.5 and $-1.6 \mathrm{ea}^{\circ}{ }^{-3}$). were associated with the position of the platinum atom. The final positional and vibrational parameters of atoms are presented in Tables 1 and 2, and a view of the molecular structure is shown in Figure 1.

The computer programs used are listed in ref. 12.

[^0]

Figure 1. A perspective view of the molecule, with thermal ellipsoids displaying 50% probability- Hydrogen atoms are omitted.

Results and discussion
Crystal and molecular structure of cis-[PtCl ${ }_{2}\left(\right.$ PEt $\left.\left._{3}\right)(C O)\right]$
The crystal structure is built of discrete monomeric molecules. The shortest distances between atoms in different molecules are close to the sums of the appropriate van der Waals radii.

The molecules display a cis-square planar coordination around the platinum atom and almost ideal C_{5} symmetry-

The orientation of the phosphine ligand, evident from the Cl(2)-Pt-P-C torsion angles (Table 3). is such as to bring the ethyl group involving the atoms $C(4)$ and $C(5)$ into the coordination plane of platinum. The arrangement of the other two ethyl groups is such as to make the planes through the atoms $F, C(2)$ and $C(3)$ and $P, C(6)$ and $C(7)$ nearly coincident (dihedral angle 3°), and both normal to the plane defined by the atoms $P, C(4)$ and $C(5)$ (dihedral angles 93 and 90°). The conformations about the P-C bonds are staggered, as shown
by the Pt-P-C-C torsion angles (Table 3). From an inspection of models it appears that such a conformation of the PEt $_{3}$ ligand and its orientation, with respect to the coordination plane of the metal atom, are favourable for the minimisation of steric repulsions in a square planar molecule. It is therefore not surprising that similar PEt_{3} conformations and orientations have been observed in several other cis-[PtCl $\left.{ }_{2}\left(\mathrm{PEt}_{3}\right) \mathrm{L}\right]$ molecules [12]. The bond lengths and angles in the triethylphosphine ligand are normal (Table 3), the Pt-P-C and $C-P-C$ angles showing the expected deviations from the ideal tetrahedral value [15].

The non-bonding intramolecular contacts and the angular distortions in the coordination plane of platinum indicate that the molecule is subject to some steric strain. Thus the $C(1) \ldots C(4), C 1(2) \ldots C(2)$ and $C 1(2) \ldots C(6)$ distances are 3.15 , 3.48 and $3.49 \AA^{\circ}$, respectively, and the $P-P t-C(1)$ and $P-P t-C l(2)$ angles deviate from 90° by 4.7 and -2.1° (Table 3). The indiyidual displacements of the $P t, P, C l(1)$ and $C l(2)$ atoms from their least-squares plane* do not exceed 0.002 ${ }^{\circ}$; the displacements of the $C(1), O, C(4)$ and $C(5)$ atoms from the same plane are less than $0.06{ }^{\circ}$.

The Pt-Cl (1) and Pt-Cl (2) distances, $2.368(3)$ and $2.296(4) A$ respectively, show that the triethylphosphine ligand exerts a substantially larger trans-influence than the carbonyl group, while the Pt-P distance $[2.265(3) \dot{A}]$ reflects the cis-influence of the carbonyi group (see below). The Pt-C distance $[1.855(14) \AA$ il is the same as that [1.858(7) A] in the analagous compound cis- $\left[P t C l_{2}\left(P Q h_{3}\right)(C O)\right]$, and indicates that

[^1]the co-ordinated carbon monoxide possesses appreciable π-acceptor properties [4].

TABLE 3

SELECTED INTERATOMIC DISTANCES AND ANGLES

Bond lengths (A)

Pt-Cl (1)	$2.368(3)$	$P-C(6)$	$1.806(13)$
Pt-CI (2)	$2.296(4)$	$C(2)-C(3)$	$1.529(21)$
Pt-P	$2.265(3)$	$C(4)-C(5)$	$1.546(20)$
Pt-C(1)	$1.855(14)$	$C(6)-C(7)$	$1.507(20)$
$P-C(2)$	$1.830(13)$	$O-C(1)$	$1.124(19)$
$P-C(4)$	$1.840(14)$		

Bond angles (${ }^{\circ}$)

$C l(1)-P t-C I(2)$	$89 . O(1)$	$P t-P-C(2)$	$111.4(4)$
$C l(1)-P t-C(1)$	$88.4(4)$	$P t-P-C(4)$	$113.3(4)$
P-Pt-Cl(2)	$87.9(1)$	$P t-P-C(6)$	$111.2(4)$
$P-P t-C(1)$	$94.7(4)$	$C(2)-P-C(4)$	$109.3(6)$
$C l(1)-P t-P$	$177.0(1)$	$C(2)-P-C(6)$	$105.3(6)$
$C 1(2)-P t-C(1)$	$176.9(4)$	$C(4)-P-C(6)$	$106.0(6)$
$P-C(2)-C(3)$	$113.6(9)$	$P-C(6)-C(7)$	$113.6(9)$
$P-C(4)-C(5)$	$110.9(10)$	$P t-C(1)-0$	$176.5(12)$

Torsion angles (*)

$C 1(2)-P t-P-C(2)$	$58(1)$	$P t-P-C(2)-C(3)$	$62(1)$
$C 1(2)-P t-P-C(4)$	$-178(1)$	$P t-P-C(4)-C(5)$	$-176(1)$
$C 1(2)-P t-P-C(6)$	$-59(1)$	$P t-P-C(6)-C(7)$	$-62(1)$

cis- And trans-influence of ligands in cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right) \mathrm{L}\right]$

complexes

Accurate crystallographic studies are now available for eight complexes of the type cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right) \mathrm{L}\right]$, where the ligands I display a wide range of electronic properties. Both strong and weak σ-donors, such as PEt_{3} and Cl^{-}, and also strong and weak π-acceptors, such as $C O$ and carbenoid, are represented. The bond lengths in these complexes are listed in Table 4, together with the ${ }^{\mathbf{l}} \underline{J}^{\left(P t-F E t_{3}\right.}$) coupling constants. They enable us to examine in some detail the dependence of metal-ligand bonding upon the nature of the ligands L.

TABLE 4
BOND LENGTHS (A) AND COUPLING CONSTANTS (Hz) in cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right) \mathrm{L}\right]$ COMPLEXES

L	Pt-P	$\begin{gathered} \text { Pt-cl } \\ \text { (cis to } \mathrm{L}) \end{gathered}$	$\begin{gathered} \mathrm{Pt}-\mathrm{Cl} \\ \text { (trans to } \mathrm{L}) \end{gathered}$	$\left(P t^{-}-\mathrm{IE}_{3}\right)$	Ref.
Cl^{-}	2.215 (4)	2.382(4)	2.301 (3) ${ }^{\text {a }}$	3704	6
$\mathrm{C}\left(\mathrm{NPhCH}_{2}{ }_{2}\right.$	2.234(3)	2.381 (3)	2.362(3)	$3720^{\text {b }}$	8
CNPh	2.238(8)	2.365(11)	2.333(12)	$3049^{\text {c }}$	9
C (OEt) NHPh	2.239 (8)	$2.367(7)$	2.361(5)	-	7
PEt_{3}	$2.259(2)^{\text {a }}$	$2.361(6)^{a}$	2.361 (6) ${ }^{\text {a }}$	$3515^{\text {a }}$	20
CO	2.265 (3)	2.368(3)	2.296(4)	$2754{ }^{\text {c }}$	This work
$P(O P h){ }_{3}$	$2.269(1)$	2.355(2)	2.344 (2)	$3210^{\text {d }}$	12
PF_{3}	2.272 (3)	2.357 (3)	2.305 (3)	2760	11

[^2]The Pt-Cl (trans to L) bond lengths in Table 4 dispiay a variation of about $0.07 \mathrm{~A}^{\circ}$ and increase along the series $\mathrm{CO} \sim \mathrm{Cl}^{-}=\mathrm{PF}_{3}<\mathrm{CNPh} \leqslant \mathrm{P}(\mathrm{OPh})_{3}<\mathrm{PEt}_{3} \simeq \mathrm{C}(\mathrm{OEt}) \mathrm{NHPh}=\mathrm{C}\left(\mathrm{NPhCH}_{2}\right)_{2}$. This series reflects the increasing σ-basicity and decreasing π-acidity of the ligands and it is therefore compatible with current views on the trans-influence of ligands in transition metal complexes [1,18,19]

The platinum-ligand bonds cis to L are also affected by the nature of L. The Pt-P distances vary by about $0.06 \AA^{\circ}$, almost as much as the $P t-C l$ (trans to L) distances. The variation in Pt-Cl (cis to L) distances is smaller, ca. $0.03 \AA^{\circ}$, but still statistically significant. In addition, we note that the

Figure 2. A plot of Pt-Cl (cis to L) versus Pt-P bond lengths in cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right) \mathrm{L}\right]$ complexes (see Table 4) The ligands I and the unweighted least-squares trend Ilne are shown. The errors indicated are standard aeviations.

Pt-cl(cis to L) distances display a consistent trend, illustrated in Figure 2: they decrease as the Pt-P distances increase (linear correlation coefficient -0.9).

Considering the cis-influence of Iigands as their ability to weaken the cis-metal-ligand bonds, it is obvious that in Cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right) L\right]$ complexes the ligands L can be arranged in a cis-influence series on the basis of either the Pt-P or Pt-cl (cis to L) bond lengths. The Pt-P distances, which display greater variability, increase along the series
 of course, is approximately a reversal of the series of increasing Pt-cl (cis to I) distances.

The cis-influence of ligands L may arise either from their steric or electronic properties, or perhaps from a combination of both. It is now recognised that in severely overcrowded platinum(II) complexes the steric repulsions between ligands can lead to considerable lengthening of Pt-P bonds. Thus in trans $-\left[P \operatorname{lI}_{2}\left\{P\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right\}_{2}\right]$ [20] the $\mathrm{Pt}-\mathrm{P}$ bonds are about $0.06 \AA$ longer than in trans- $\left[P \mathrm{PBr}_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]$ [21], and this is attributed mainly to the change in steric demands of the ligands in the two complexes. In the less crowded cis-[PtCl $\left.{ }_{2}\left(P E t_{3}\right) \mathrm{L}\right]$ molecules discussed here the steric interactions of ligands are expected to be considerably weaker. To what extent, if at all, they affect the length of the $p=-P$ bonds is difficult to establish, since the force constants required for molecular mechanics calculations are not known. In this predicament we note that the observed cis-influence series bears little relationship to the size of ligands if as measured, in the absence of a less crude estimate, by Tolman's cone angle ($95,102,104,130$ and 132° for CO, $\mathrm{Cl}^{-}, \mathrm{PF}_{3}, \mathrm{P}^{\prime}$ (OPh) $_{3}$ and $\mathrm{PEt}_{3}{ }^{\prime}$ respectively] [221, Ligands of similar size, such as Cl, Co and PF_{3}, occur at opposite ends of the serfes, while ligands
of different size, such as $C O, \mathrm{PF}_{3}, \mathrm{P}(\mathrm{OPh})_{3}$ and PE_{3}, exert similar cis-influences. Furthermore, on steric grounds one might expect both bonds cis to L to lengthen as L becomes larger, thus leading to a positive correlation between the Pt-P and Pt-Cl (cis to L) distances. The observed correlation is. however, negative. We therefore consider that the steric properties of L are at most a minor factor in determining their position in the cis-influence series and, consequently, that the cis-influence of L is predominantly an electronic effect.

Another important observation emerges from the bond length data in Table 4: cis- and trans-influence of L are not related to each other, for the $P t-P$ and $P t-C l$ (cis to L) distances show no correlation with the Pt-cl(trans to L) distances. This indicates that cis- and trans-influence are transmitted through differen: electronic mechanisms in the molecular framework. Current theories emphasize that only those ligands which are strong o-bases exert high trans-influence [1, 18, 19]. From the observed trans-influence series of ligands L, P_{3} is expected to be a stronger base than $\mathrm{Cl}^{-}, \mathrm{P}(\mathrm{OPh})_{3}$, or PF_{3}. The same relative basicicies of the three phosphorus-donor ligands are evident from i.r. and u.v. spectroscopic data [22]. The ordering of $\mathrm{Cl}^{-}, \mathrm{PEt}_{3}, \mathrm{P}(\mathrm{OPh})_{3}$, and PF_{3} in the cia-influence series is then obviously not related to their o-basicities. This is consistent with Syrkin's theory [231, which consifers that interactions between mutually cis a-bonds are of minor importance, and which has been followed in most subsequent discussions of trans-influence of ligands. Zumahl and Drago however have predicted, on the basis of extended Htickel molecular orbital calculations, that cis- and trans-influence transmitted through o-bonds are of comparable magnitude [24].

The ${ }^{1} \mathcal{J}\left(\mathrm{Pt}^{\mathrm{PEt}}{ }_{3}\right)$ coupling constants, which are thought to measure the s-component of the P t-P σ-bond [25], display
a range of ca. 1000 Hz in cis- $\left[\mathrm{PtCl}_{2}\left(\mathrm{PEt}_{3}\right) \mathrm{L}\right]$ complexes (Table 4). However, they show only an indifferent correlation with the $P t-P$ bond lengths, which reflect the overall Pt-P bond order. In the complexes with $L=\mathrm{PEt}_{3}$ and CO, the Pt-P bond lengths are equal to within experimental error despite a difference in the coupling constants of 761 Hz . It therefore appears that, although both the overall and s-electron Pt-P bond orders are sensitive to the nature of the cis-ligand, there is no simple correspondence between the two quantities.

In the cis-influence series of L the ordering of ligands shows an obvious tendency: ligands which are considered to be strong π-acids, notably $C 0$ and PF_{3}, occur at the upper end of the series, while weak π-acids, such as Cl^{-}and carbenoid, occur at the lower end of the series. We therefore suggest that the cis-influence of L may reflect its π-acceptor properties. The lengthening of the $P t-P$ bonds can then be rationalized on the basis of an increasing competition between the L and PEt $_{3}$ ligands for the metal atom \underline{a}_{π}-electrons. A necessary assumption here is that the PEt_{3} ligand is a π-acid, albeit a weak one. The Pt-Cl(cis to L) bond lengths may also be directly affected by the ligands L, increased $P t \rightarrow L$ backdonation leading to enhanced electrostatic attraction between platinum and the chloride ligand. Alternatively, it may be considered that the ligand L influences the cis-Pt-cl bond only indirectly, by modifying the trans-influence of the phosphine.

In conclusion we note that the $P t-P$ bond is more sengitive to the nature of the cis-ligands than the Pt-cl bond. It then follows that platinum-phosphorus bond lengths, coupling constants or stretching frequencies will provide a valid measure of trans-influence of ligands only if in the complexes compared the ligands cis to phosphorus are always the sameThis precaution is less important if $p t-c 1$ bond parameters are used as a measure of trans-influence.

Acknowleđgements

We are grateful to Dr. R.J. Cross for providing a sample and to the University of Glasgow for a studentship (to T.S.).

References

1 T.G. Appleton, H.C. Clark and L.E. Manzer, Coordin. Chem. Rev., $10(1973)$ 335, and references therein.

2 Lj. Manojlović-Muir, K.W. Muir and R. Walker, J. Organometal. Chem., $66(1974)$ C21.

3 Lj. Manojlović-Muir, K.W. Muir and R. Walker, Acta Crystallogr., $31(1975)$ s145.

4 Lj. Manojlović-Muir, K.W. Muir and R. Walker, J. Chem. Soc. Dalton, (1976) 1279.

5 D.R. Russell. P.A. Tucker and S. Wilson, J. Organometal. Chem.. 104(1976) 387.
G.W. Bushnell. A. Pidcock and M.A.R. Smith, J. Chem. Soc. Dalton, (1975) 572. E.M. Badley, K.W. Muir and G.A. Sim, J. Chem. Soc. Dalton, (1976) 1930.

8 Lj. Manojlović-Muir and K.H. Muir. J. Chem. Soc. Dalton, (1974) 2427.
9. E.M. Badley, Ph.D. Thesis, University of Sussex, 1969.

Lj. Manojlović-Muir, K.W. Muir and T. Solomun, to be published.

11 P.B. Hitchcock, B. Jacobson and A. Pidcock, personal communication.
12 A.N. Caldwell, Lj. Manojlović-Muir and K.W. Muir, J. Chem. Soc. Dalton, in the press.

13 Lj. Manojlović-Muir, J. Chem. Soc.(A). (1971) 2796: K.W. Huix, J. Chem. Soc. (A), 1971 (2663)-

14 International Tables for X-Ray Crystallography*. Vol. IV, Kynoch Press, Birmingham, Great Britain, 1974.
M.A. Bush, A.D.U. Hardy, Lj. Manojlović̌Muir and G.A. Simp J. Chem. Soc. (A), (1971) 1003.

16 D.J. Cardin, B. Cetinkaya and M.F. Lappert, J. Organometal. Chem.. 72 (1974) 139.

17 G. Anderson, R.J. Cross and D.S. Rycroft, personal communication.

18 R. McWeeny, R. Mason and A.D.C. Towl. Discuss. Faraday Soc., 47 (1969) 20; R. Mason and A.D.C. Towl, J. Chem. Soc. (A), (1970) 1601.

19 Lj. Manojlović-Muir and K.W. Muir, Inorg. Chim. Acta, 10(1974) 47.

20 N.A. Alcock and P.G. Leviston. J. Chem. Soc. Dalton. (1974) 1834 .

21 G.G. Messmer and E.L. Amma, Inorg. Chem., 5(1966) 1775.
22 C.A. Tolman, Chem. Rev., 77 (1977) 313.
23 Y.K. Syrkin, Bull. Acad. Sci. U.S.S.R., (1948) 69.
24 S.S. Zumdahl and R.S. Drago, J. Amer. Chem. Soc., $90(1968) 6669$.
25 A. Pidcock, R.E. Richards, and L.M. Venanzi, J. Chem. Soc. (A), (1966) 1707; G.G. Mather, A. Pidcocke and G.J.N. Rapsey, J. Chem. Soc. Dalton, (1973) 2095.

[^0]: * A list of the final values at f fl and $1 f_{s}$ can be obtained from the authors on request.

[^1]: * Defined by the equation $-0.518 x+0.011 y-0.855 z=-2.729$; X, I, and \underline{z} are co-ordsnates referred to orthonormal axes along $a_{r} b_{k}$ and \mathcal{C}.

[^2]: a Mean value b
 Ref 16.
 Ref. 9. \quad d
 Ref. 17.

